

UV 226 (Ex) UV 236 (Ex)

Запорные вентили DN 15 до 400, PN 16, 25 и 40 с ручным маховиком

Описание

Запорные вентили UV 2x6 это ручная арматура с исключи-тельными свойствами, не требующая ухода и обслужива-ния. Использование сильфонного уплотнения гаранти-рует герметичность арматуры относительно окружающей среды. Кроме этого, арматура дополнена аварийным сальником из экспандированного графита. Вентили с сальником из экспандированного графита оснащены обратным седлом. Преимуществом вентиля являются низкие перестановочные усилия при открытии и закрытии, которые не изменяются в течение всего срока службы. Конструкция бугеля позволяет обеспечить хорошую изоляцию вентиля и безопасное использование маховика даже при высокой температуре среды. Маховик невосходящий, что позволяет использование в тесном пространстве. Благодаря четкому указателю можно с большой точностью определять положение затвора в текущий момент.

Вентили UV 2x6 отвечают требованиям ČSN EN 13709 (10/2003).

Вентили UV 2x6 Ex отвечают требованиям II 1/2G IIB TX

Применение

Вентили предназначены в первую очередь для эксплуатации на горячеводных и пароводных линиях, на электростанциях, ТЭЦ.

обменных и передающих станциях, а также в обычной теплотехнике.

Благодаря широкому диапазону диаметров они применяются для запора (отключения) главных ветвей, обводных линий, отводящих трубопроводов и трубопроводов для отбора проб. Использованные материалы позволяют применять вентили также в оборудовании для кондиционирования воздуха, холодильной и другой специализированной технике.

Рабочие среды

Вентили UV 2x6 годятся для закрывания воды, водяного пара и других жидких и парообразных сред, совместимых с материалами корпуса и затвора вентиля. Вентили UV 2x6 можно использовать также для технических и отопительных газов, горючих жидкостей. Для долговременного срока эксплуатации изготовитель рекомендует установить в трубопровод перед клапаном фильтр для улавливания механических примесей или другим подходящим способом позаботиться о том, чтобы регулируемая среда не содержала абразивные или механические примеси.

Монтажные положения

Вентили могут монтироваться в произвольном положении, исполнение V и В только в горизонтальном положении с обеспечением достаточного пространства для обслуживания маховика. Направление потока определяется стрелками, нанесенными на корпус. Обратное (переменное) направление потока допускается с исключением исполнения V и В. Более полная информация о монтаже описана в Руководстве по эксплуатации - Документ РМ-060.

Технические параметры

Конструкционный ряд	UV 226 (Ex)	UV 236 (Ex)				
Исполнение	Запорный вентиль прямой					
Диапазон диаметров	DN 15 до 400					
Условное давление	PN 16, 25 и 40					
Материал корпуса	Литая углеродистая сталь 1.0619 (GP240GH)	Литая корроз. сталь1.4581 (GX5CrNiMoNb19-11-12)				
Материал конуса	Коррозиестойкая сталь 1.4021/17 022.6 Коррозиестойкая сталь 1.4571/17					
Диапазон рабочих температур 1)	от -10 до +400°C					
Присоединение	Тип В1 (грубый уплотнительный выступ согласно ČSN-EN 1092-1 (4/2002)					
	Строительные длины согласно ČSN-EN 558-1 (3/1997), ряд1					
Тип конуса	Тарельчатый, разгруженый по давлению, регулирующий					
Расходная характеристика	Запорный, линейный					
Неплотность ²⁾	Согласно ČSN EN 12266-1 (11/2003) - класс неплотности А					
Прокладка уплотнения	Сильфон с аварийным сальником, графит, экспандированный графит					

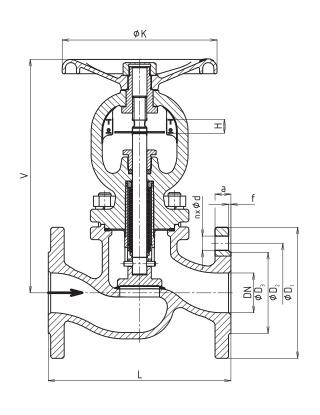
- 1) Вентиль возможно использовать после консультации с изготовителем в зависимости от материала до -60°C
- 2) Вентили испытываются стандартно водой, возможно тоже воздухом (смотри типовой номер)

Размеры и массы вентилей UV 2x6 (Ex)

		PN 16					PN 25					PN 40						
DN	D ₁	D ₂	D ₃	d	n	а	D ₁	D ₂	D ₃	d	n	а	D ₁	D ₂	D ₃	d	n	а
	mm	mm	mm	mm		mm	mm	mm	mm	mm		mm	mm	mm	mm	mm		mm
15	95	65	45			16							95	65	45			16
20	105	75	58	14		18							105	75	58	14		18
25	115	85	68		4	18							115	85	68		4	18
32	140	100	78		4	18							140	100	78		4	18
40	150	110	88			18							150	110	88			18
50	165	125	102			20			Jako l	PN 40			165	125	102	18		20
65	185	145	122	18	4 ¹⁾	22							185	145	122			22
80	200	160	138			24							200	160	138			24
100	220	180	158			24							235	190	162	22	8	24
125	250	210	188		8	26							270	220	188	26	0	26
150	285	240	212	22		28							300	250	218	20		28
200	340	295	268	22		24	360	310	278	26	12	30	375	320	285	30	12	34
250	405	355	320	26	12	26	425	370	335	30	12	32	450	385	345	33	12	38
300	460	410	378	20		28	485	430	395	30	16	34	515	450	410	33	16	42
400	580	525	490	30	16	32	620	550	505	36	10	40	660	585	535	39	10	50

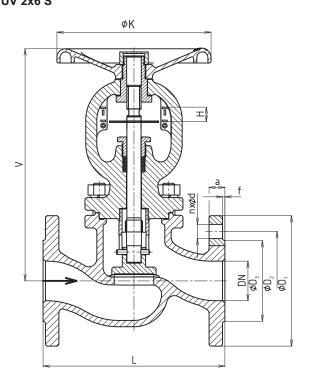
		PN 16, PN 25, PN 40									
DN	Н	L	$V^{R,S,B}$	V V)	K	f	m				
	mm	mm	m	nm	mm	mm	kg				
15	6	130	18	39	120		4.3				
20	6	150	18	39	120	2	5.1				
25	6	160	18	39	120	~	5.8				
32	10	180	22	20	160		9.5				
40	10	200	22	20	160		9.8				
50	16.5	230	29	95	195		17.5				
65	16.5	290	29	95	195		20.5				
80	25	310	36	86	280	3	34				
100	25	350	36	86	300	3	44				
125	40	400	52	23	350		77				
150	40	480	523	553	350		113				
200	50	600	505	721	350		240				
250	75	730	663	945	350	2	410				
300	75	850	713	994	350	4	610				
400	100	1100	855	1166	350		1240				

¹⁾Принимая во внимание ранее действовавшие нормативные документы, воспользовались возможностью выбора количества соединительных винтов, предложенных стандартом ČSN-EN 1092-1

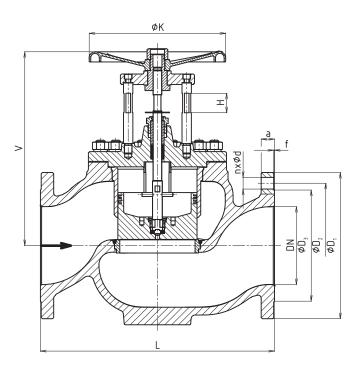

Коэффициенты расхода Kvs, дифференциальное давление и коэффициент потерь ζ (зета)

DN	Запо	рный	Регулир		
	Kvs [M³/час]	ζ	Kvs [М³/час]	ζ	$Δp_{max}$ [ΜΠα]
15	4.3	4.4	4.0	5.1	4.00
20	7.0	5.2	6.6	5.9	4.00
25	11.0	5.2	10.0	6.2	4.00
32	17.5	5.5	16.0	6.5	4.00
40	27.0	5.6	24.0	7.1	4.00
50	47.0	4.5	39.0	6.6	4.00
65	68.0	6.2	56.0	9.1	4.00
80	116.0	4.9	80.0	10.2	4.00
100	162.0	6.1	140.0	8.2	4.00
125	250.0	6.2	184.0	11.5	4.00
150 UV 2x6 R,S	364.0	6.1	320.0	7.9	2.00
150 UV 2x6 B,V	364.0	6.1	350.0	6,6	4.00
200	570.0	7.9	540.0	8,8	4.00
250	800.0	9.8	800.0	9,8	4.00
300	1100.0	10.7	1000.0	13,0	4.00
400	1700.0	14.2	1800.0	12,6	4.00

Значение Δp_{max} максимальный перепад давления на клапане, при котором гарантируется надежное открытие и закрытие. Для увеличения срока службы седла и конуса рекомендуется, чтобы постоянный перепад давления на клапане не превышал значение 1.6 MPa.



UV 2x6 R UV 2x6 V



UV 2x6 S

UV 2x6 B

